Collinearity


Theorem:
If A, B and C are collinear points, then the real numbers x, y, z not all zero can be found such that
x + y + z = 0 xA + yB + zC = 0.
and also the inverse of this thorem is true: If three such numbers not all zero can be ound then the points are collinear.

Conversely
Theorem:
If A, B, C are three given points which are not collinear and we can find three real numbers x, y, z such that x+y+z = 0 and xA + yB + zC = 0,
then we must have x=y=z=0.

Lonicera ”Dropmore Scarlet”

Annonser

Om mattelararen

Licentiate of Philosophy in atomic Physics Master of Science in Physics
Det här inlägget postades i matematik 1c, Uncategorized. Bokmärk permalänken.

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s