## Techniques of integration

If the primitive function of an integrand can be found it is always best to take advantage of the fundamental theorem of calculus. In order to be able to determine integrals whose indefinte integrals(primitive functions)  cannot be found immediately some … Läs mer

## Solution to 15.2 in Heureka

15.2

Publicerat i Uncategorized | Lämna en kommentar

## Venn-diagrams

A good way of illustrating probabilities is to use so-called Venn-diagrams. In effect this means representing the probability of an event with circles. Mutually excluding events can be represented by two separate non-overlapping ciecles. P(A) + P(B) = P(A U … Läs mer

Publicerat i matematik 5, Probability | Märkt | Lämna en kommentar

## Diophantine equations

A Diophantine equation is an equation in which only integers are allowed as coefficients. Also the solutions must be integers. This can be written as ax + by = c. This is a linear diophantine equation. For non-linar diophantine equations … Läs mer

| | Lämna en kommentar

## Invited speaker at Matematikbromötet 2012

Publicerat i Gymnasiematematik(high school math), Uncategorized | Märkt , | Lämna en kommentar

## Probability

The probability of a certan outcome of an experiment can be calculated as the quotient of the number of outcomes giving the desired result and the number of possible outcomes. P(A) = (number of outcomes giving the desired results)/ (number … Läs mer

Publicerat i Gymnasiematematik(high school math), Probability | Märkt | 1 kommentar

## Polar rose

An example of> polar coordinates >and the funny graphs you can draw with them. Here a >polar rose>.

## Regula de tri och ekvationer samt olikheter

Ekvationelösningens grunder visas i denna filmsnutt.   This is one of the most useful methods in mathematics when it comes to usefulness. It means ‘the rule of three’ and concerns computing the third un-known variable when the two others … Läs mer

Publicerat i Gymnasiematematik(high school math), matematik 1c | | Lämna en kommentar

## Reflection 2:

Is it posible to reduce the number of coordinates necessary to specify the position in space from three to one if space itself is quantised?

Publicerat i Uncategorized | Lämna en kommentar

## A reflection

Is faculty defined for non-integers? Ex 5! =5*4*3*2*1=120 What about 0.1!?

Publicerat i Uncategorized | Lämna en kommentar