Imaginary numbers


A solution to the simple second-degree equation

x2 + 1 =0

can not be found along the line of real-numbers.

Therefore it was necessary to invent a fictive number i such that i2=-1.

i.e. the imaginary numbers making it possible to take the square root of negative numbers.

They are represented along an axis horizontal to the axis of real numbers.

A combination of a real number and a imaginary number is called a complex number.

z = 2  + 3i.

Annonser

Om mattelararen

Licentiate of Philosophy in atomic Physics Master of Science in Physics
Det här inlägget postades i matematik 1c, matematik 4, matematik 5 och har märkts med etiketterna , , , . Bokmärk permalänken.

2 kommentarer till Imaginary numbers

  1. zjdgzq skriver:

    Wonderful beat ! I wish to apprentice whilst you amend your website, how could i subscribe for a blog website? The account aided me a acceptable deal. I have been a little bit familiar of this your broadcast provided shiny transparent idea|

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s