Cauchy’s integralformula


Theorem

Suppose U is an open subset of the complex plane C, f : UC is a holomorphic function and the closed disk D = { z : | zz0| ≤ r} is completely contained in U. Let \gamma be the circle forming the boundary of D. Then for every a in the interior of D:

f(a) = \frac{1}{2\pi i} \oint_\gamma \frac{f(z)}{z-a}\, dz

where the contour integral is taken counter-clockwise.

The proof of this statement uses the Cauchy integral theorem and similarly only requires f to be complex differentiable. Since the reciprocal of the denominator of the integrand in Cauchy’s integral formula can be expanded as a power series in the variable (a − z0), it follows that holomorphic functions are analytic. In particular f is actually infinitely differentiable, with

f^{(n)}(a) = \frac{n!}{2\pi i} \oint_\gamma \frac{f(z)}{(z-a)^{n+1}}\, dz.

This formula is sometimes referred to as Cauchy’s differentiation formula.

The circle γ can be replaced by any closed rectifiable curve in U which has winding number one about a. Moreover, as for the Cauchy integral theorem, it is sufficient to require that f be holomorphic in the open region enclosed by the path and continuous on its closure.

This proof is based on the fact that the value of the integral is invariant under deformation as long as the integrand is analytic over this closed area.

Annonser

Om mattelararen

Licentiate of Philosophy in atomic Physics Master of Science in Physics
Det här inlägget postades i Calculus, Imaginary numbers och har märkts med etiketterna . Bokmärk permalänken.

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s