Line integrals


The line integral along the curve C can be written as
\int_C f\, ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)|\, dt.
where C is parametrisized as r(t) with the parmeter t.

∫¦r'(t)¦ dt equals the arc length i.e. the length of the curve.

Consider eg the circle.  x2+ y2 = r2. This can be parametrisized as follows

x(t) = cos(t)

y(t) = sin(t)

The perimeter of the circle can then be calculated according to

∫ sint2+cos2t dt= 2π
0

Annonser

Om mattelararen

Licentiate of Philosophy in atomic Physics Master of Science in Physics
Det här inlägget postades i Gymnasiefysik(high school physics), matematik 5. Bokmärk permalänken.

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s