Combinations


It is called acombination of r elements if the order of the elements in a selection of r elements out of n elements is irrelevant and redundance is not allowed. Another way of ststing this is to say that all elements are selected at once and not one-by-one.

This number is given by the ratio n!/(n-r)!. It is also necessary to divide by r!  since redundance is not allowed.

Ex. The capital of Madagascar is called ANTANANARIVE.

The number of letters here is 12 but to find all permutations we need to take into consideration that we have three N therefore we get the same word independently of their internal order and must theefore divide by 3!. The same is the case for the four A which force us to divide by 4!.

The number of combinations for this word therefore is 12!/(4!3!).

Generally the number of subsets with r components selected out of n elements is

C(n,r) = n!/((n-r)!r!)

Annonser

Om mattelararen

Licentiate of Philosophy in atomic Physics Master of Science in Physics
Det här inlägget postades i Gymnasiematematik(high school math), matematik 1c, matematik 5, Probability, Uncategorized och har märkts med etiketterna . Bokmärk permalänken.

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s