Partialbråksuppdelning.


Partialbråksuppdelning går ut på att man skriver om ett rationellt uttryck som summan av ratioenlla uttryck av lägre gradtal

Partialbråksuppdelning ger ansatsen

\begin{displaymath}<br /><br /> \frac{1+4x+4x^{2}}{(x+5)^{2}(x+2)(1-x)}=\frac{A}{(x+5)^{2}}<br /><br /> +\frac{B}{x+5} + \frac{C}{x+2}+\frac{D}{1-x}<br /><br /> \end{displaymath}

Handpåläggning ger $A=4\cdot4^{-1}(-1)=6,$ $C=2\cdot 2^{-1}3^{-1}=5$ och $D=2\cdot 3^{-1}=3$. Sätter vi nu $x=0$ får vi $1\cdot<br /><br /> 4^{-1}2^{-1}=6\cdot 4^{-1}+B5^{-1}+5\cdot 2^{-1}+3$ eller $1=5+3B+6+3,$ dvs $B=5$.

Detta är användbart bl.a. vid integrationer där integranden är en rationell funktion som man inte kan finna någon primitiv funktion  till.

Annonser

Om mattelararen

Licentiate of Philosophy in atomic Physics Master of Science in Physics
Det här inlägget postades i Algebra och har märkts med etiketterna . Bokmärk permalänken.

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s