l´Hôpital’s rules


sin(x)/x = 1 when x approaches infinity. Direct substitution of x=0 gives the indeterminate form 0/0.
The limit of an indeterminate form can be any number. For instance
kx/x= 0 , |x|/x2= &inf; as x tends towards infinty.
Many indeteminate forms can be evaluated with basic algebra.
If this is not possible l’Hôpital’s rule is the solution.

It states that the limit of an indeterminate form equals the limit of the dervative of the nominator and denominator of the indeterminate form.

Annonser

Om mattelararen

Licentiate of Philosophy in atomic Physics Master of Science in Physics
Det här inlägget postades i Calculus, matematik 3c, matematik 4 och har märkts med etiketterna , . Bokmärk permalänken.

3 kommentarer till l´Hôpital’s rules

  1. Mohaned skriver:

    Grymt !!
    Då borde lim x=>0 (sin(x)/x) = 1. När x = 0 => sin(0)/0 = (0/0). l’Hôpital’s regel. lim x=>0 (f'(x)/g'(x)) = cos(x)/1 = cos(x), där x = 0 => cos(0) = 1.

    Rätt? 🙂

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s