Trigonometric formulae


 


 

The trigonometric functions are defined with the aid of the unit circle as follows:

File:Circle-trig6.svg

The perhaps most important trigonometric formulas from which almost all other trigonometric formulas can be derived are the angle transformation formulas:

\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B
\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B
\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B
\cos (A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B
These formulae can be derived by computing the distance between two points on the unit circle  with the distanceformula and with the cosinetheorem and then equating them to each other. 
And by direct application of the Pythagorean theorem on the unit circle one obtains the important relation

\sin^2 A + \cos^2 A = 1 \
connecting sine and cosine.
 
Annonser

Om mattelararen

Licentiate of Philosophy in atomic Physics Master of Science in Physics
Det här inlägget postades i Geometri, Gymnasiematematik(high school math), matematik 4 och har märkts med etiketterna , . Bokmärk permalänken.

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s