Geometri Gymnasiematematik(high school math) matematik 4

Trigonometric formulae



The trigonometric functions are defined with the aid of the unit circle as follows:


The perhaps most important trigonometric formulas from which almost all other trigonometric formulas can be derived are the angle transformation formulas:

\sin (A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B
\sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B
\cos (A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B
\cos (A - B) = \cos A \cdot \cos B + \sin A \cdot \sin B
These formulae can be derived by computing the distance between two points on the unit circle  with the distanceformula and with the cosinetheorem and then equating them to each other. 
And by direct application of the Pythagorean theorem on the unit circle one obtains the important relation

\sin^2 A + \cos^2 A = 1 \
connecting sine and cosine.

Av mattelararen

Licentiate of Philosophy in atomic Physics
Master of Science in Physics


Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut /  Ändra )


Du kommenterar med ditt Google-konto. Logga ut /  Ändra )


Du kommenterar med ditt Twitter-konto. Logga ut /  Ändra )


Du kommenterar med ditt Facebook-konto. Logga ut /  Ändra )

Ansluter till %s