Differential equations


An equation containing the derivative of a function is called a differential equation.

Depending on the order of the derivatives it is of the first, second or higher order.

The simplest differential equation is an ordinary linear homogenous differential equation of the first order:

y’ + 3y = 0.

The solution to this equation is given with the integrating factor: e-3x 

 Where the exponent is the primitive function for the coefficient in front of y.

Multiplication of both sides with this factor gives:

   e-3x  y’ –  3y e-3x    = 0

The left side is identical to the derivative of the product D(y  e-3x ).

Therefore  integration of both sides generates y e3x  =C and y = C e-3x 

which is the solution C being an arbitrary constant.

For inhomogenous equations the solution is given by the sum of the solution to the homogenous equation and a particular solution: y = yp + yh.
The particular solution is found by proposing a soultion of the same kind as the type of function standing to the right of the equal sign.

Annonser

Om mattelararen

Licentiate of Philosophy in atomic Physics Master of Science in Physics
Det här inlägget postades i Calculus, Gymnasiematematik(high school math), Uncategorized och har märkts med etiketterna , , . Bokmärk permalänken.

En kommentar till Differential equations

  1. Ping: Partial differential equations | iMath

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s