Differential equations of the second order


Second order differential equations of the homogen type

y” (x)+ a y'(x) + by(x) = 0

are possible to solve with the aid of the characteristic equation

r2 + a r +b =0

If this have the roots r1 and r2  

the solution is given by

y(x) = Cer1x + Der2 x  

If the equation is inhomogenous and the right side is a polynom assume a solution a polynomial of the same degree

If the right side is a trigonometric function assume a as a solution a combination of trigonometric functions.

Ex. Solve the equation y” -3y – 4y = 0

Solve the characteristic equation: r2-3r-4 = 0
r=4 och r = -1.

The general solution is y = Ce-4x + Dex
Where C and D are arbetare constants.

Annonser

Om mattelararen

Licentiate of Philosophy in atomic Physics Master of Science in Physics
Det här inlägget postades i Calculus, matematik 4, matematik 5 och har märkts med etiketterna . Bokmärk permalänken.

2 kommentarer till Differential equations of the second order

  1. mattias roden skriver:

    E det inte kingen/mattias 🙂

Kommentera

Fyll i dina uppgifter nedan eller klicka på en ikon för att logga in:

WordPress.com Logo

Du kommenterar med ditt WordPress.com-konto. Logga ut / Ändra )

Twitter-bild

Du kommenterar med ditt Twitter-konto. Logga ut / Ändra )

Facebook-foto

Du kommenterar med ditt Facebook-konto. Logga ut / Ändra )

Google+ photo

Du kommenterar med ditt Google+-konto. Logga ut / Ändra )

Ansluter till %s