Kategoriarkiv: Advanced


Pascal’s triangleFakultetfunktionen definieras med hjälp av en funktion som kallas gammafunktionen. Γ(z+1) = zΓ(z) där Γ(z) = ∫e-t tz-1 dt Integreras denna funktion partiellt fås fakulteten av z-1. Och alltså är ∫e-t tz-1 dt = (z-1)!

Publicerat i Advanced, Mathematical physics, Uncategorized | Märkt , , | Lämna en kommentar

Härledning av Cauchy -Riemanns ekvationer

Publicerat i Advanced, matematik 4, Uncategorized | Märkt , , , , | Lämna en kommentar

Lagrangian mechanics

In functional analysis the variable itself is a function. This is used e.g. in the Lagrangian formulation of mechanics where one derives the Lagrangian i.e. L = kinetic energy – potential energy. This transforms classical Newtonian mechanics into differentialcalculus. The … Läs mer

Publicerat i Advanced, Calculus, Fysik 2, Mathematical physics | Märkt , , | Lämna en kommentar

The Cauchy-Riemann equations

In order for a complex function of a  single complex variable to be differentiable it must be differentiable both parallell to the imaginary axis δy →0 and parallell to the real axis δx →0. This condition leads to the CAuchy –Riemann equations- The … Läs mer

Publicerat i Advanced, Calculus, Imaginary numbers | Lämna en kommentar

Vector algebra-adding and subtacting vectors

The mass of your body is a measure of the amount of matter (atoms) that constitute your body. This number is a quantity that can be pinpointed on the x-axis (or any line of numbers). Such quantities are called scalars.  … Läs mer

Publicerat i Advanced | Märkt , | Lämna en kommentar