Kategorier
Advanced matematik 5 Mathematical physics Uncategorized

Laplacetransformen och Fouriertransformen

Pierre Simon de Laplace

Laplacetransform är en matematisk transform som bland annat används vid analys av linjära system och differentialekvationer. Den är namngiven efter Pierre Simon de Laplace. Transformen avbildar en funktion , definierad på icke-negativa reella tal t ≥ 0, på funktionen , och definieras som:

Laplacetransformen är definierad för de tal (reella eller komplexa) för vilka integralen existerar, vilket vanligen innebär för alla tal med realdel , där är en konstant som beror på ökningen av .

e<sup>-st</sup> benämns kärnan i transformen och skiljer sig åt mellan de olika transformerna.

 

Genom att laplacetransformera en differentialekvation kan den omvandlas till en algebraisk ekvation, som kan vara lättare att lösa. Efter att ha löst den kan uttrycket sedan transformeras tillbaka. Detta är speciellt värdefullt när problemet är diskontinuerligt, och varje intervall måste behandlas för sig. I laplacetransformens algebraiska ekvation blir i stället varje intervall en term i ekvationen.

En fördel med att använda laplacetransformen i stället för den besläktade fouriertransformen är att med den förra kommer begynnelsevärdet att direkt inkluderas i den algebraiska ekvationen.

Tillämpning på differentialekvationslösning:

Genom att laplacetransformera en differentialekvation kan den omvandlas till en algebraisk ekvation, som kan vara lättare att lösa. Efter att ha löst den kan uttrycket sedan transformeras tillbaka. Detta är speciellt värdefullt när problemet är diskontinuerligt, och varje intervall måste behandlas för sig. I laplacetransformens algebraiska ekvation blir i stället varje intervall en term i ekvationen.

En andraordningens differentialekvation kan omvandlas till en första ordningens differentialekvation genom en Laplacetransformation. En tredje ordningens diffekvation kan omvandlas till en andraordningens diffekvation osv.

Därvid förenklas problemet.

En fördel med att använda laplacetransformen i stället för den besläktade fouriertransformen är att med den förra kommer begynnelsevärdet att direkt inkluderas i den algebraiska ekvationen.

Övriga tillämpningar:

Transformationen har en mängd egenskaper som gör den användbar såväl för analys av linjära dynamiska system som vid lösande av differentialekvationer.

I konkreta fysiska system tolkas ofta laplacetransformen som en transformering från tidsdomänen, där indata och utdata ses som funktioner av tiden, till frekvensdomänen, där samma in- och utdata ses som funktioner av komplexa vinkelfrekvenser, eller radianer per tidsenhet. Förutom att ge ett fundamentalt annorlunda sätt att beskriva beteendet hos ett system så gör denna transformering att de matematiska beräkningar som krävs för att analysera systemet blir mycket enklare och mindre komplexa. Det är en kraftfull teknik för analys av system som exempelvis elektriska kretsar, harmoniska oscillatorer, optiska instrument, mekaniska system och reglersystem. Laplacetransformen kan ge en alternativ beskrivning av ett system, vilket ofta drastiskt förenklar analysen av systemets beteende, såväl som skapandet av nya system utifrån givna specifikationer.

 

Ex. Om man Laplacetransformerar rörelseekvationen för Den harmoniska oscillatorn

mX”(t) + kX(t) = 0

med startvillkoren X(0) = X<sub>0</sub> och X'(0) = 0.

Lapalcetransformering ger

mL{X”(t)} + kLX(t) = 0

→ ms2X(s) – msX<sub>0</sub> + kX(s) = 0

X(s) = X0 s/(s2 + ω02)

där &omega;0 = k/m

Detta är Laplacetransformen av cos(&omega;t)

varför X(t) = X0 cos(&omega;0t)

x2

 

 

omvandlas

Kategorier
Advanced Mathematical physics Uncategorized

Gammafunktionen

IMG_0321

Fakultetfunktionen definieras med hjälp av en funktion som kallas gammafunktionen.

Γ(z+1) = zΓ(z)

där

Γ(z) = ∫e-t tz-1 dt
Integreras denna funktion partiellt fås fakulteten av z-1.
Och alltså är
∫e-t tz-1 dt = (z-1)!

Kategorier
Advanced matematik 4 Uncategorized

Härledning av Cauchy -Riemanns ekvationer

Kategorier
Advanced Calculus Fysik 2 Mathematical physics

Lagrangian mechanics

In functional analysis the variable itself is a function.

This is used e.g. in the Lagrangian formulation of mechanics where one derives the Lagrangian i.e.
L = kinetic energy – potential energy.

This transforms classical Newtonian mechanics into differentialcalculus.
The variables, or degrees of freedom, can be selected to make the problem as easy as possible. They can be cartesian coordinates, velocities or momentums for example.

By solving Lagrange’sM differential equation the Lagrangian can be found.

A similar system was devsed by William Rowan Hammilton. He studied the hamiltonian for the system. This is the sum of the kinetic and potential energy of the system.

It is used for example in the Schrödinger equation.

https://www.google.se/search?q=lagrange&client=safari&hl=sv-se&prmd=mivn&source=lnms&tbm=isch&sa=X&ved=2ahUKEwj7nNudz47gAhUrhaYKHfTmAMwQ_AUoAnoECA0QAg#imgrc=OJ1wq2zLr0WKuMedbeca77-6993-41aa-a628-95f37e159063

Kategorier
Advanced Calculus Imaginary numbers

The Cauchy-Riemann equations

In order for a complex function of a  single complex variable to be differentiable it must be differentiable both parallell to the imaginary axis δy →0 and parallell to the real axis δx →0.

This condition leads to the CAuchy –Riemann equations-

The Cauchy–Riemann equations on a pair of real-valued functions of two real variables u(x,y) and v(x,y) are the two equations:

(1a)     \dfrac{ \partial u }{ \partial x } = \dfrac{ \partial v }{ \partial y } \,

and

(1b)    \dfrac{ \partial u }{ \partial y } = -\dfrac{ \partial v }{ \partial x } \,
Proof:
Suppose that

 f(z) = u(z) + i \cdot v(z)

is a function of a complex number z. Then the complex derivative of ƒ at a point z0 is defined by

\lim_{\underset{h\in\mathbb{C}}{h\to 0}} \frac{f(z_0+h)-f(z_0)}{h} = f'(z_0)

provided this limit exists.

If this limit exists, then it may be computed by taking the limit as h → 0 along the real axis or imaginary axis; in either case it should give the same result. Approaching along the real axis, one finds

\lim_{\underset{h\in\mathbb{R}}{h\to 0}} \frac{f(z_0+h)-f(z_0)}{h} = \frac{\partial f}{\partial x}(z_0).

On the other hand, approaching along the imaginary axis,

\lim_{\underset{h\in \mathbb{R}}{h\to 0}} \frac{f(z_0+ih)-f(z_0)}{ih} =\frac{1}{i}\frac{\partial f}{\partial y}(z_0).

The equality of the derivative of ƒ taken along the two axes is

i\frac{\partial f}{\partial x}(z_0)=\frac{\partial f}{\partial y}(z_0),
Holomorphy is the property of a complex function of being differentiable at every point of an open and connected subset of \mathbb{C} (this is called a domain in \mathbb{C}). 
 function that is complex-differentiable in a whole domain (holomorphic) is the same as an analytic function. This is not true for real differentiable functions.
Kategorier
Advanced

Vector algebra-adding and subtacting vectors

Garden

The mass of your body is a measure of the amount of matter (atoms) that constitute your body. This number is a quantity that can be pinpointed on the x-axis (or any line of numbers). Such quantities are called scalars

It is important here to bear in mind the difference between weight and mass.

The weight is the pull of gravity acting upon any mass within the gravitational field.  This quantity not only has a size but also a direction. It is directed towards the center of gravity of the earth.

Galaxy M 83 15 million light-years away held together by gravity. Courtesy: Anglo-Australian telescope.

Such quantities possessing both mass and direction are termed vectors.

Many important physical quantities are not just quantities (As eg mass, energy and temperature) but  they also have a direction (as e.g. velocities, forces, momentum, pressure, accelerations).

They are usually represented by the length and direction of an arrow or by the coordinates (x, y, z) of the endpoint of the arrow representing the vector beginning at the origin. They are often denoted by a bold letter (F) with an arrow above it.

Position vector

Vectors are added by the polygonal method which means that in order to obtain the vectorsum of several vectors you let the vector number two start at the endpoint of the first vector and so on. After you have drawn all the vectors like this after each other you are able to construct the vectorsum, or resultant, of all the vectors by drawing one vector from the startpoint of the first vector to the endpoint of the last vector.

File:Vectoraddition.svg

A vector can always be divided into x,y, and z-components

F=Fx i+ Fy j+ Fz k.

where i, j, k are the orthogonal unit vectors for the cartesian coordinatesystem.

This gives us the possibility to add vectors algebraically:

 F + G =  (Fx+Gx, Fy+Gy, Fz+Gz) i.e. add the x-coordinates separately and do likewise with the y and z-coordinates to acquire the coordinates of the sum.