Kategorier
Advanced matematik 5 Mathematical physics Uncategorized

Laplacetransformen och Fouriertransformen

Pierre Simon de Laplace

Laplacetransform är en matematisk transform som bland annat används vid analys av linjära system och differentialekvationer. Den är namngiven efter Pierre Simon de Laplace. Transformen avbildar en funktion , definierad på icke-negativa reella tal t ≥ 0, på funktionen , och definieras som:

Laplacetransformen är definierad för de tal (reella eller komplexa) för vilka integralen existerar, vilket vanligen innebär för alla tal med realdel , där är en konstant som beror på ökningen av .

e<sup>-st</sup> benämns kärnan i transformen och skiljer sig åt mellan de olika transformerna.

 

Genom att laplacetransformera en differentialekvation kan den omvandlas till en algebraisk ekvation, som kan vara lättare att lösa. Efter att ha löst den kan uttrycket sedan transformeras tillbaka. Detta är speciellt värdefullt när problemet är diskontinuerligt, och varje intervall måste behandlas för sig. I laplacetransformens algebraiska ekvation blir i stället varje intervall en term i ekvationen.

En fördel med att använda laplacetransformen i stället för den besläktade fouriertransformen är att med den förra kommer begynnelsevärdet att direkt inkluderas i den algebraiska ekvationen.

Tillämpning på differentialekvationslösning:

Genom att laplacetransformera en differentialekvation kan den omvandlas till en algebraisk ekvation, som kan vara lättare att lösa. Efter att ha löst den kan uttrycket sedan transformeras tillbaka. Detta är speciellt värdefullt när problemet är diskontinuerligt, och varje intervall måste behandlas för sig. I laplacetransformens algebraiska ekvation blir i stället varje intervall en term i ekvationen.

En andraordningens differentialekvation kan omvandlas till en första ordningens differentialekvation genom en Laplacetransformation. En tredje ordningens diffekvation kan omvandlas till en andraordningens diffekvation osv.

Därvid förenklas problemet.

En fördel med att använda laplacetransformen i stället för den besläktade fouriertransformen är att med den förra kommer begynnelsevärdet att direkt inkluderas i den algebraiska ekvationen.

Övriga tillämpningar:

Transformationen har en mängd egenskaper som gör den användbar såväl för analys av linjära dynamiska system som vid lösande av differentialekvationer.

I konkreta fysiska system tolkas ofta laplacetransformen som en transformering från tidsdomänen, där indata och utdata ses som funktioner av tiden, till frekvensdomänen, där samma in- och utdata ses som funktioner av komplexa vinkelfrekvenser, eller radianer per tidsenhet. Förutom att ge ett fundamentalt annorlunda sätt att beskriva beteendet hos ett system så gör denna transformering att de matematiska beräkningar som krävs för att analysera systemet blir mycket enklare och mindre komplexa. Det är en kraftfull teknik för analys av system som exempelvis elektriska kretsar, harmoniska oscillatorer, optiska instrument, mekaniska system och reglersystem. Laplacetransformen kan ge en alternativ beskrivning av ett system, vilket ofta drastiskt förenklar analysen av systemets beteende, såväl som skapandet av nya system utifrån givna specifikationer.

 

Ex. Om man Laplacetransformerar rörelseekvationen för Den harmoniska oscillatorn

mX”(t) + kX(t) = 0

med startvillkoren X(0) = X<sub>0</sub> och X'(0) = 0.

Lapalcetransformering ger

mL{X”(t)} + kLX(t) = 0

→ ms2X(s) – msX<sub>0</sub> + kX(s) = 0

X(s) = X0 s/(s2 + ω02)

där &omega;0 = k/m

Detta är Laplacetransformen av cos(&omega;t)

varför X(t) = X0 cos(&omega;0t)

x2

 

 

omvandlas

Kategorier
Algebra Calculus Gymnasiematematik(high school math) Mathematical physics Uncategorized Vectors

Vektoranalys (Vectoranalysis)

Derivering av vektorer kan ske på två sätt. Antingen som skalärprodukt eller vektorprodukt. Skalärprodukten ( En.dot – product) ger en skalär som resultat. Ett exempel är beräkning av arbete som skalärprodukten av kraften och förflyttningen i kraftens riktning: W = Fs. Den kan beräknas som Bqvcos(α).

Eller i koordinatform:

Fx∙x + Fy∙y

Lorentzkraften som anger hur stor kraft en laddning, Q, som rör sig med hastigheten v i ett magnetfält B påverkas av är ett exempel på en vektorprodukt (En. cross product).
F = qvxB.
Kraften, F, är en vektor som är vinkelrät mot v och B. Dess absolutbelopp kan beräknas som Bqvsin(α). Där &alpha: är vinkeln mellan v och B-vektorerna.

den första kallas divergenten och den sistnämnda rotation,

Enligt Helmholtz sats kan en vektor u delas upp i en irrotationell och en solenoidal del. Ett irrotationellt, eller konservativt vektorfält, har en potentialfunktion. Exempel på konservativa fält är gravitationsfältet och det elektriska fältet. Ett solenoidalt fält saknar plus- och minuspoler dvs laddningar. Exempel på sådana fält är det magnetiska fältet. För den irrationella delen är rotationen av vektorfältet ∇x u = 0 medan divergensen är noll för den solenoidala delen ∇∙u=0.

Här betecknar ∇ summan av den partiella derivatan i x-led, y-led och z-led.
∇= ∂/∂x + ∂/∂y + ∂/∂z vilket tillämpat på en skalär ger gradienten.

 

Divergens (vektoranalys) – Wikipedia

Rotationen anger vridstyrkan i det magnetiska fältet medan divergensen anger källstyrkan.

I koordinatform fås:

En av Maxwells ekvationer är för övrigt just att divergensen av det magnetiska fältet är noll vilket innebär att det inte finns några magnetiska laddningar alltså isolerade nord- och Sydpoler (En. there are no magnetic poles) :

∇∙B = 0.

Deriverar men volymen får man en yta detta använda vid Gauss sats där volymsintegralen av divergensen blir ytintegralen av vektorn. ∰∇∙u dxdydz= ∯udS

Enligt Stokes sats blir ytintegralen av rotationen av en vektor lika med linjeintegralen av vektorn. ∯∇xu dS = ∲u dl.

Kategorier
Fysik 1 matematik 4 matematik 5 Mathematical physics Uncategorized

Kartavbildnings -problemet

Att projicera en tredimensionell yta, t.ex jordgloben, på en tvådimensionell yta är omöjligt o man samtidigt vill behålla proportionerna på ländernas storlek. Eller?

Kategorier
Advanced Mathematical physics Uncategorized

Gammafunktionen

IMG_0321

Fakultetfunktionen definieras med hjälp av en funktion som kallas gammafunktionen.

Γ(z+1) = zΓ(z)

där

Γ(z) = ∫e-t tz-1 dt
Integreras denna funktion partiellt fås fakulteten av z-1.
Och alltså är
∫e-t tz-1 dt = (z-1)!

Kategorier
matematik 4 Mathematical physics Uncategorized

Fourier transformationer

Förklaras här.
De är viktiga bl.a. för vid trådlös informationsöverföring.
Fouriers sats säger att alla periodiska funktioner kan beskrivas som serier av sinus och cosinusfunktioern.

Kategorier
matematik 5 Mathematical physics Uncategorized

Kurvintegraler (lineintegrals)

Olika geometriska objekt kan beskrivas med parameterkurvor.
Till exempel kan enhetscirkeln med medelpunkt i origo beskrivas av:
γ(t) = cos(t) + i sin(t) där t är parametern. Den varierar från 0 till 2π för ett varv.

Enligt Eulers formel kan denna även skrivas som eit.

Att integrera en funktion längs med ett parameterkurva innebär att man substituerar integralens variabel med kurvans parameterfunktion.

Exempel: Integrera funktionen f(z) = z längs en kvarts enhetscirkel. Det vill säga
0 < t < π/2

Då substituerar man z mot eit  → dz/dt = i eit. → dz = i eitdt

∫ eit i eitdt.= i∫ ei2t dt. = i[ei2t ]/(2i) = [ei2/2] = (eiπ – ei20) /2 = ((-1) – 1)/2 = -1

Det kan vara värt att nämna att om man integrerar endast absolutbeloppet av dz = γ dt fås båglängden dvs längden av kurvan.

Ex 2. Bestäm båglängden av enhetscirkeln.

∫ABS(eiti) dt = [t]= 2π ty ABS(ei )= 1.

Q.E.D..

Kategorier
Fysik 2 Gymnasiefysik(high school physics) Mathematical physics

The standard model


The standard model is the broadly accepted theory for the building blocks of the universe. The fundamental forces and the elementary particles.

According to this theory the particles can be divided into hadrons and leptons. They are the building blocks of matter. The hadrons forms the nucleus of the atom and the electrons orbiting the nucleus is a lepton.

Leptons means light particle.

Because of their colour charge the quarks always appear in triplets or in quark-anti-quark pairs.

The proton is composed of 2 up-quarks and one down quark (uud) and the neutron is (ddu).

In the standard model every force-interaction must be accompanied by the exchange of particles. According to the standard model there are four fundamental forces in nature: gravity, electro-magnetic forces, strong nuclear force and weak nuclear force.

Gravity is the exchange of gravitons, electromagnetic forces are the exchange of virtual photons, the strong interaction is mediated by gluons whereas the weak force is mediated by Z-bosons.

In addition there are top-quarks, down quarks and a lepton called muon and another called neutrino.

Particles can also be categorized as particles with half-numbered spins and bosons -particles with integer spin. Fermions are the constituents of matter whereas bosons are responsible for the transfer of forces.

The constituents of matter must have half-integer spin since they must follow Pauli’s exclusion principle. This requires the wavefunctions to be asymmetric.

The question why particles have masses can be explained with the Higgs particle

The laws of physics are time-invariant so even the dinosaurs obeyes the same natural laws as we do.

exempel på uppgift:

hur stor blir fotonenergin då ett elektron-positronpar förintas?

Enligt Einsteins formel E=mc2 fordras energin 2&dot; 0,511 MeV= 1,022 MeV eftersom massenergin för en elektron är 0,511 MeV.

Kategorier
Advanced Calculus Fysik 2 Mathematical physics

Lagrangian mechanics

In functional analysis the variable itself is a function.

This is used e.g. in the Lagrangian formulation of mechanics where one derives the Lagrangian i.e.
L = kinetic energy – potential energy.

This transforms classical Newtonian mechanics into differentialcalculus.
The variables, or degrees of freedom, can be selected to make the problem as easy as possible. They can be cartesian coordinates, velocities or momentums for example.

By solving Lagrange’sM differential equation the Lagrangian can be found.

A similar system was devsed by William Rowan Hammilton. He studied the hamiltonian for the system. This is the sum of the kinetic and potential energy of the system.

It is used for example in the Schrödinger equation.

https://www.google.se/search?q=lagrange&client=safari&hl=sv-se&prmd=mivn&source=lnms&tbm=isch&sa=X&ved=2ahUKEwj7nNudz47gAhUrhaYKHfTmAMwQ_AUoAnoECA0QAg#imgrc=OJ1wq2zLr0WKuMedbeca77-6993-41aa-a628-95f37e159063